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Ahstmet. This IS an attempt to clanfy the structure of spontaneous symmetry breaking It 
IS sllown that there are two types of SttuaUon In one, called here S B S I ,  a rymmetnc ground 
state 16 degenerate with an asymmetric one, m the other, SBSZ, the ground state belongs 
to a representation other than the identml one Some cases which look hke spontaneous 
symmetry breaking are in fact symmetry-hreakmp appronm.nons 

1. h 6 d M C ( h .  me d a 5 5 k d  EQS& 

This paper does not claim to contain any new results, hut is intended only to clarify 
the basic logic. 'Spontaneously broken symmetry' denotes a situation in which the 
Eamiitonian of a system possesses certain symmetries, but m which the usual descrip- 
tion of the system in the absence of excitations (the 'vacuum') does not have the same 
symmetries, i.e does a01 belmg to the identical representation of the relevant symmetry 
gronp. The simplest example of a spontaneously broken symmetry (SBS) is ID motion 
in a potentia1 with two equal minima, say at x = o and x = -U. The symmetry is the 
operation x+  -I The problem arises in one degree of freedom of molecules such as 
%gar Classically it is o'uv~ous that there are two equilibrium positions, and the system 
v d  settie in one or  the other. thus breaking the symmetry. 

2. me @YO-¶'& pPObk2lEl h gW.Q&WB iW&~nieS 

In quantum mechanics we know from general theorems that the ground state, unless 
it is degenerate, must belong to an irreducible representation of the symmetry group, 
i.e. it must he either even or odd in x, and we know that the ground state of a one-body 
problem has a nodeless wavefunction. so it is even The ground state represents a 
situation in which the Falticie is with equal probability jn either well The first excited 
state will in general be odd. Its energy lies abovo :hi ground state by zn amount which 
depend; on the amplitude for penetrating the barrier between the t w ~  minima. So the 
energy difference is small if the barrier is high or the mass is large. 

Consider ior a moment the limit in which energy difference between the two states 
is zero. We then have freedom to choose any linear combination of the two degenerate 
wsvefmctions, in particular we ma) choose one which vanishes in one of the wells, 
and therefore breaks the symmetry, as in the classical case. However, as long as the 
system is isolated. there is nothing to compel us to make that choice, and on the face 
of it it seems rather unnatural to do so. 

If an external perturbation acts on the system, however weak, the eigenfunctions 
must be found close to the 'eigenfunctions of zero-order approximation', i.e. those 
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among the degenerate eigenfunctions which in the d-generate space disgonalize the 
perturbation. Now any realistic perturbation which splits the degeneracy will a d  
differently on a particle in tke left-hand well from one on the nght, ann therefore the 
coned zero-order eigenfunctions are those which localize the particle in either well 
and thus break the symmetry 

Now turn to the realistic case, in which there is no degeneracy, and on the face of 
it we would have to use the symmetric eigenfundion to describe the ground state, and 
this indeed has to be the starting-point for studying 2 penurbation which is weaker 
than the splitting between the even and the odd state. But for large mass or high harrier 
this splitting is exponentially smail, 2nd such weak perturbing forces are not very 
interestiug. If the effect of the force is comparable with the splitting one has to use 
the method of almosi degenerate eigenfunctions, and if the perturbing potential is 
iarger than the splitting this amounts to treating the two states as degenerate Again 
any realisric perturbation requires the localized, i.e. symmetry-breaking, wavefunction, 
although this is not strictly an eigenfunction of the unperturbed Hamiltonian, i.e it is 
not sfricrly stationary. 

We might ask what would be an exampti: of 2 peIturbution for which the zero-order 
eigenfunctions would be the ones respecting the symmerry. A little algebra shoss that 
this requires 

v,,-v*,-v2,+v,*=o (1) 

v,, + v,, i 0 (2) 

and 

where the subscripts 1 2nd 2 denote the wavefunctions in the right- aiid left-hand well 
(the sum and difierence of the even and odd solutions). For a real local poteniial 
V,,= V2,, and then from ( I )  V,,= VIZ.  

Then ( 2 )  shows that the perturbing posential must act in the region in which @, 
and overlap, i.e. inside tke barrier. where they are both small. Such potentials are 
not likely to arise in practice. 

The symmetry-breaking state may also arise if we observe the position ofthe particle, 
during a time short compared to fr divsded by the level splitting. This observation will 
s h w  ii on the lefe. or the right-hand side, i.e. iig 211 asymmetric state. This is not a 
s?acionary state, but t\e error in the energy is not seen during the short time. If we 
wait long enough we shall see the psnicle oscillating between the two wells. 

This is the situation of the optically active mo!ecules, ruch as sugar. A single 
mo!ecule of right-handed sugar in isoktion will have a small, but finite probability of 
making a trailsition to the left-handed Corm and vice versa. But this probability is so 
small that over reasonable tiaes we may disregard it. So we are led to a situation in 
which we think ofsugaias normally right-handed or left-handed, and not the even or 
odd combination, although the latter are the correct srationary stales. Also an observa- 
tion of the structure directly hy 2 high-resolution microscope, or indirectly through 
the optical activity, we will show :he moleculz in the righi- or left-handed form, thus 
breaking the symmetry. 

3. Other simple a 5 s  

eqnaily trivial example is &e centre-of-mass motion of any system such as a crystal. 
Tne Hamiltonian has translationa! symmetry, and the exact ground state~is one in 
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which the wavefuncuon is spiead over all space, with zero momentum. Above it in 
energy starts a continuous spectrum of different momenta. If the crystal is macroscopic 
a very small energy interval contains a big enough spread of momentum to allow the 
formation of a wavefunction which localizes the centre of mass of the crystal to well 
within an atomic spacing. So again the crystal we handle is represented by a localized 
function, which breaks the symmetry. The situation is evidently quite similar with 
rotational symmetry 

We can again ask what perturbation would lead to the momentum eigenstates as 
zero-order functions. It would have to be something like an infinitely extended uniform 
magnetic field, with the crystal carrying an  overall chasge In practice crystals and 
other solid objects which we study are usually fixed to a bench or held in our hand, 
spoiling the translational symmetry. But when we observe a freely falling snowflake it 
has a definite position and is not spread over all space 

The common features of these systems are (i) the near-degeneracy of states of 
diiierent symmetry, and tii) the tendency of realistic perturbing effects, or of methods 
of observation, to seiect localized, and thus symmetry-breaking states. I shall refer to 
this situation as a spontaneously broken symmetry of the first kind (sesi). It is evidently 
misleading to say that in cases of broken symmetry ‘the ground state is not an eigenstate 
of the original [symmetry} group’ (Anderson 1990). 

4. ~ y ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~  approxiwntions 

When we are concerned with the rotation of an isolated molecule, it is not large enough 
for the above considerations to apply, and indeed separate levels with deiinite rotarional 
quantum numbers, i.e. distinct representations of the rotation group, are seen in band 
spectra. Whether we should treat a molecule as having a (nesriy) specified orientation, 
or a specified angular momentum; depends on the context. In particular3 collisions 
may be so fast that the time during which the colliding molecules interact is shon, 
and the resulting energy uncertainty &-eater than the spacing of the rotational levels. 
We may then regard a number of rotational le%eis as degenerate, and attribute to the 
molecule roughly specified orientation 

A more extreme situation arises in nuclear physics, A nucleus is not large or heavy 
enough for different states of translation or rotation to be near-degenerate. No perturha- 
tion that is commonly encountered would be stiong enough io mix different states of 
translatioil or rotation sufficiently to treat the nucleus as having a fixed posiiion or 
oricntation. (However, this may be the case in short collisions, as in the molecular 
case mentioned above.) The observed spectra again show clea,.ly defined rotational 
!evels 

However, another consideration anses here: it 1s f xsd convenient to use wavefunc- 
?inns which break the symmetry as approximations to the corsect ones. This is because 
this ailows us to incorporate by very simpie means correiations which are more 
important for the energy than the symmetry. For example, the Hartree-Fock method 
(or its refinement by the Brueckner-Eethe method) starts from a potential well in a 
fixed position, thus violating the tianslational symmetry; a defonned well also violates 
rotational symmetiy. The advantage of the model is that it allows us io use the 
Hariree-Fock sc1i;tion as a first approximation. If we wanted to preserve the transla- 
tional symmetry in the Nartree-Pock rnethad, we would have to make a determinant 
of plane waves, which would be useless as an approximation. The point is that using 
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the Hartree-Fock method with plane waves excludes correlations between the positions 
of the nucleons, which should be located closely together in space. 

This is uot a situation in which the symmetry is sponraneouslv broken. We con- 
sciousiy use a wavefunction which is deficient by violatrng the symmetry. TkGs fault 
shows up in the shell model by the appearance oi spurious states. which repment the 
oscillation of !he centre of mass of the nucleus relative to the centre of the fictitious 
well. This situation clearly cannot be described as spontaneously broken symmetry. I 
shall in tne following refer to it as a ' symet+x- . i  

A similar situation exists when we use a 8d~;ormel well as a starting-point for 
describing a nucleus. n i s  violates the rotational symm :try, which is expc5men:ally 
evident in the spectrum showing states with anr,uiar momentum quantum nLnibers. 
Here agair. using a spherical well would, in time Ilartree-Pock method, ignore the 
correlatione in angle. In a deformed well, if ORZ nucleon is far out in one direction, 
others are likely to be in that same (or opposite) direction. We again have an SEA, in 
WLllCl' wc ILo_Y= a >yLuu'G"J i", UlS auYP"*L6c  U, , L ' * L Y U " ' ~ .  i'il L I L L L L L s 7 c - L  "Lh. Ll lC  

angular correlations. 
A purist might argue thet the distinction between SBSI and SBA is purely quantitative. 

a question of the energy difference between states of different syametry relative to the 
End of permlrbing forces to be encountered. Kowzver, :he situations of, say, the sugar 
2nd the deformed nucleus are so different that it is sensible to use different names for 
them. There may, of course, be borderline cases between these categories. 

approximation' (SBA). 

.-.&:A. ... ̂ .-"A- " ___I^.l, e-- *l-^ ..A.."..+" .~ ^C : -J., A:,." . U,.-*..-. S,.,.L *%.- 

5. hether  h p r ?  of 5yme?ey b~@akhg. Fems?agne:ism 

All the examples of symmetry brcaking described so far have the common feature that 
the stare we use for the description of the systen does not heiong to an irreducible 
representation of the symsletry group. There is a different class of situation, which 
shows the t)rpical signs of broken symmeiry, end should be included under that heading. 
That is the case in which the ground stace (a? 'vacuum') helongs to a representation 
of the symetry group other than the idenriczi one. In that case all excitations (or 
particles) bshave as if they did nor have the full symmetry. I rhdl re€er to this as 
spontaneously broken symmetry of the second kind (SBSZ). 

An example is d ferromagnet, which was the original Schulbeispiel ofa spontaneously 
"I"=... 'J.YY"...J. 11111 1- rj .Y.LL.* V I  1-  a-vum, CrjbL1 w1111 ap".' s, W L U L  LYIIIT8 U J k . , ~  IY  

align the spins, 50 Khat the ground stlte has J = Ns, a n i  the total component in, say, 
the 3 direction is Ns. (This dr scription ignores magnetic interactions arid other effects; 
it is rather a mathematical ferromaznet, but this will serve OUT purpose.) Thus the 
ground state is not symmetric unde: the spin rotational group, but it helongs to an 
irreducible rzpresentation of the group. 

Accordiingly the excitation spectrum has lost symmetry For instance, the state 
generated by applying :he opemor J,  = 6m to the ground state (which is of course 
the state with M = J -  1) has zero excitation energy. In the limit of infinite N, i.e. for 
a ferromagnet filling 211 space, this state bccomes theGoldstone boson. indeed i: is 
easy to see that the proof uf the Golastone theorem depende o d y  on the existence of 
a group dement which does net leave the ground state invariant. 

Anderson (1990) prefers not to regard ferromagnetism (and presumably other cases 
of sasz) as ceses of broken symmetfy, because the spectrum oFGoldstone bosons does 
not have a singdarrty at infinite waveiecgth, as in the case of phonons. ?'his is largely 

h-dzsi. ...-mnt~.. Thir i e  ~ 1 ~ l A - n  ,4 a T  ,,+A-- -e-%. .A+h I-:- .Ar t .  r..-,n- +-.:-- c- 
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a semantic question, but it seems convenient to include these cases among the broken 
symmetries. 

6 A ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~  

lllr JII".aLL"LL "1 a.. f l l r L L L n L " l l k a ~ 1 l r l  U lllV.0 cunLplr~arcu. (rn,u=,a"c, 277" 1186 pv,nreu 
out this qualitative differen.zc.j Assume a crystal of 2W atoms, each with spin s, can 
be divided into two equivalent sublattices. The forces tend to make the spins of 
neighbouring atoms opposite, so that the spins in each sublattice tend to be parallel, 
and the two sublattices have opposite magnetization. No exact solution is available. 

This system again has rotational symmetry, and the giound state belongs to the 
identical representation, i.e. thz total spin is S = 0. In additiot., the system allows a 
translation which interchanges the two sublattices (if the crystal is large enough CO 

ignore surface effects). The ground state will be even or odd under this transfunnation. 
We are interested in a state in which one sublattice, say 1, has positive spin component 
is the reference direction, and :he other, b, has a negative componeat. This statc breaks 
both symmetries. It is not easy to produce it by 3n external fie:& because it would 
have to be a field which acts in opposite directions on the atoms in the two sublattices. 
However, such a state can be reached by observation, for example by elaetic neutron 
scattering, observing the phase of the scattered wavz. 

This i s  not a stationary state, and in due course will change to iis partner under 
the symmetries. I have not been able to find a reliable estimate of the rate of change, 
but 1 conjecture it to be quire tong in :he macroscopic case, since the transition requisss 
every spin in the crystal io flip. Since the Hamiltonian contains only terms Xvhich 
change the spin components of two neighbouring atoms by one unit. this involves 
many virtual intermediate steps. This somewhat hand-waving argument suggesks that 
the svdtch takes a very long tims, and that the cost in energy of the asymmetric state 
is low. 

In other words, this is again a case of SBSI, though I cannot give an estimate of 
the relevant small energy difference. 

^ C ^  ..--. ic ----" ---. : 1: ^̂ .̂ A ,*__I ^_^^_  *"*er .._.: .... > 

. 

7. $ , ~ ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~  

Next consider the case of a superconductor, €or which it is often claimed that the 
gauge invariance is spontaneously broken. Global gauge invariance guarantees, in 
particular, conservation of the number of electrons, while the BCS approximation to 
the ground state is a superposition of states with diseient electron numbers. Such 
superpositions cannot form thc exact state of the sysiem because the eiectron number 
is strictly conserved. Indeed this i s  a typical case of SBA. W h t  correlation does ;his 
a,pproximation help us to enforce? The characteristic features of the Bcs ground state 
wavefuiiction ere: (ij  the dlectrrirs are coupled in pairs, each pail hciug CGrmd, wirh 
zeso momentum, from stdtes near the edge of the Fermi distribution: (ii) the State 
function i s  symmetric between the pairs. I: in die secund condition which is difficult 
bo implement whiIekeepingafixedparlwleiiumb~r,~uthatitpaystotradeihesymmetrS. 
for the convenience of ensuring lhir correlation, a tyypicai case of SBA. 
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One can illustrate these statements 5y applying the idea to the B c s  ground state 
wavefunction (see Schrieffer 1964, equation (2.23)): 

$o=constantn (l+gkh,*)lO) (3) 

h&* = ca+c - (4) 

i 

where 

1 - 1  

is thz operator creating a pair, and IO) is the vacuum. The function (3) evidently contains 
all possible numbers of pairs and therefore violates global gauge insanance. 

We can prgject this state on the space of a fixed electron number, say ZN, by 
selecting ficm the expression (3) terms of order gN. This projected function evidently 
conserves glob21 gauge invanance. I shall not discuss the question of local gauge 
irsariance. 

The projected function also preserves the s?ructnre of the pairs. For current-carrying 
states, in *which the BCS pairs are defined with non-zero momentum, which may also 
depend on position, the same feaiures are preserved. 

This projected function is much harder to work with, and a direct evaluation of 
the energy would be difbcuit, bilr it is easy to see that it has approximately the same 
expectation value of the energy as the BCS function. To see this, write 

* o = z  *ON ( 5 )  
N 

where $o is the BCS function (3), and 
Hamiltonian conserves the number of etecirons, we can write for the BCS energy 

i?s part containing just hr pairs. Since the 

( 6 )  

which is the weighted average of the WO,. The weights will be concentrated in a region 
around the mean value of N, say No with 2 sprzad of about a. For lerge PI3 the 
average W varies slowly with No over that regior., and therefcre the WON must also 
vary slowly and be nearly equal to their weighted average 

A related question is how are we to understand the rolurion for quasiparticles as 
an approximation to a wavzfundion conseming global gauge invariance. In the BCS 
definition of a quasiparticle stxe 

W =  ( ~ * l ~ l ~ ~ j - ~ ( ~ ~ N l ~ l * ~ ~ j  - 
(401*0) - U ~ N  l*ooivi 

*&, = (yc, - upc-p-)*o. (7) 

$pb=C { u ~ c ~ $ O . N + I -  ~ p c - p ’ $ O , N } - ~ l b p , N .  (8) 

Insert (5) i l  (7) and collect term5 of the same electron n u m b x  

P i  

The expectetion value of the energy forthe BCS state can therecore be expressed as 

(9! 
( * ~ ~ ~ ~ ~ ~ ) - ~ ~ * ~ , N ~ ~ ~ * ~ , ~ ~  - - ~ f i P p , N E ~ , h  - 
(hlW W * , N l ~ I . , I v )  ZN&,.N ’ 

It is plausible tka?, fer large N, the and py.N vary slowly with N, so that the E , ,  
may be taken to equal their average, E,, the BCS value. 

The direct evaluation of the norins ofthe &,N is fairly easy, but thai of the diagonal 
elemem of the fY’smiltonian is complicated. Et would have been quite impossibie to 
find the solution by working within a symmetry-comeruiiig framework Applications 
and refinements of &.e ikory would also become much Izss transparent. 
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These arguments seem IO indicate that it is a good approxima:ion to work with (3) 
or its generalization, although it does not describe i- physically possible state. lt ciearly 
follows that this is not a case of spontaneously broken symmetry, bur a symmetry- 
breaking approximation. 

8. The Higgs meshaoim 

Tne most important case of SBS in particle physics is the Higgs mechanism. I have not 
been able to arrive at a complete understanding of the role of SBS in this, and the 
discussion in this section does not clarify the picture completely. 

To stari with, we consider the equation of the Higgs field by itself, not interacting 
with any other fields. We can then, of course, deal only with global gauge invariance 
The Lagrangian of the Higgs field may be written 

where U is a function which has a minimum, U,, for some vah;e, say v2, of its 
argument. For clarity we shall assume that the integral is taken over a finste volume 
'J with cyclic boundary conditions. if we write 

@ = R e'* (11) 

where, of course, R and 0 sir6 real funclions of the space doordinates, global gauge 
invariance means that 2 is invariant againsr a constant shift in 0. It is tempting to 
change to R and B as variables, but this leads to nonlinearequations, whose quantization 
is very difficult 

It is therefore usual to assume that @ is approximately real, and introduce real 
variables (f and T by 

in Y = t'?- g+i7 (12) 
neglecting terms higher than the second in D and 7, sin-ze we want to test the hypothesis 
that Q. can :eman approximately real. We then expmd: 

7 = bx exh '. 113) 

Inserting in E, finding the canonical conjugates Lo the (1 and b, forming the 
Hamiitonian and applying the quantum Nies, we find 

+ V U 0 i - 2 w " u ~ ~  14,f. (14) 

We are interested in T, since from (11) and (12), 10 a suEcient approximat;on, 
V B  = T. (151 

The average vaiue of T is given by bo, and the only term in the Hemiltmian (14) 
containing bo is (laQ./ab,l)'. Clearly, therefore, the state of minimum energy must have 
U state function which is independent of bo. For such 3 state our approximation is not 
vallid, because B o ,  and therefore 8, is not restricted to small values. There is little doub;~ 
hovever. that the correct ground state will have 3 stale function independent of 8, 
thus being invariant under a global gauge trimsformation. 
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We may compare its energy with that of 2 state in r hch  0 stays close to zero. e.g. 
if the bJ dependence of $I is 2 Gaussian: 

(16) 2 exp -+bo 

the energy is increased only by 

6E = c2h’a/V 

which vanishes in the limit of infinite volume. The situation is therefore similar to that 
of the translation of 2 large solid; except that the limit V+ U? is physically ~xact ,  and 
not an approximation We therefore have the degeneracy required for SBSI. It follovis 
that we moy choose the asymmetric or the symmetnc state, but there is at this stage 
no evident reason why we must choose the asymmetric one. 

Next we shdl consider the piiggs 6eId in the presence of an Abelian gauge field. 
I shall follow the presentation hy Chcn,” and Li (19843 The basic hgrangian density 
is 

(18) L=+[(D&)+(w+)] - U(+-+ j -&.F+” 

with 

Writing 

one can introduce the ‘unitary gzuge’ by writing 

1 a0 
g Jxr  

B = A  = b exp(-iff) i ” P  

This leads tn the ‘unitary Lagrangian density’ 

In this form apparently no gauge-dependent ?ssumpiior has been made, and it 
looks as if no symmetry hss been broken. The Lagrangian (22) is to be interpreted 
with the asgumption that in the vacuum 7 and 63 are zero. It i s  sometimes believed 
that the fact that the B field hes 2 non-vanishing mass shovis by Itself that the gauge 
invariance hzs been broken. This, hovmer, doss not foilow. A gauge invariant field 
by itself cannot have a mass, but if it is coupled to other tieids it may well do so For 
an example, see .hdersm (i963). 

?t should be norzd, however, that afrer quantizaiion the Lagrangians (18) and (22) 
are not equivalent. If we apply the canonical formalism to (18) the rime derivative of 
B does not commute wkh B. and therefwe the dilferentiation of thi; exponential implied 
in the trails:onnatirn becomes snore complicated, and m fact singular. Therefore, 
srarting from the quantized foim of (33) it is not posjible to derive (22). We may, of 
CGnrsc, regard (21) as a classical ttansforination, ieading to (22), and then eppiy the 
cmonicak fomalism. This is a difkienr theory. 
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In reelity one is not concerned with the Abelian case, but with 2 Higgs field which 
is an isodoublet, and with a Lagrangian which is icvariant under SU(2) x U( 1). The 
U(1) part of the symmetry IS like the Abelian case discussed above. The SU(2) symmetry 
is isomorphic with the rotational symmetry of an s = f spinor. Thus the vacuum 
expectation of rhe Higgs field, 2nd therefore the vacuum itself. belong to a representa- 
tion of the symmetry other than the identical one. In this respect the Higgs mechanism 
involves a symmetry breaking of the second kind, in full analogy with ferromagnetism. 

The whole mechanism therefore seems to involve both SBSI and S B S ~ ,  hut I have 
railed io clarify the s8s1 part. 

A c ~ ~ ~ ~ ~ a g ~ ~ ~ ~ §  
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